
1

Week3 1

Digital Logic Design

Week 4
Combinational Design

Week3 2

Outline

• Combinational Circuits
• Analysis Procedure
• Design Procedure
• Adders and multipliers
• Comparators
• Decoders and Encoders
• Multiplexers
• HDL For Combinational Circuits

2

Week3 3

Combinational Circuits

• What is a combinational circuit?
• What is the difference between

combinational and sequential circuits
• Implementation MSI and standard cells in

ASIC

Week3 4

Analysis Procedure
1. Label all gate outputs that are a function of

input variables with arbitrary symbols. Find the
Boolean function of these gates

2. Label all the gates that are functions of input
variables and previously labeled gates with
arbitrary symbols. Find the Boolean function of
these gates.

3. Repeat step 3 until the outputs of all the gates
are labeled

4. By repeated substitution of previously defined
functions, obtain the output Boolean functions
in terms of input variables (or truth table)

3

Week3 5

Analysis Procedure
A

B

C

D

E

F

G

Week3 6

Design Procedure
1. From the specification of the circuit. Determine

the required number of input and output and
assign a symbol to each.

2. Derive the truth that defines the required
relationship between inputs and outputs.

3. Obtain the simplified Boolean expressions for
each output as a function of the input variables.

4. Draw the logic diagram and verify the
correctness of the design.

• Example: BCD to Excess-3 Code Converter.

4

Week3 7

Binary Adder-Subtractor

• Half adder: S=x’y+xy’, C=xy

Week3 8

Full Adder

11111

01011

01101

10001

01110

10010

10100

00000

cszyx

5

Week3 9

11

11
x

yz
00 01 11 10

y

Z

X 111

1
x

yz
00 01 11 10

y

Z

X

Week3 10

Full Adder

6

Week3 11

Binary Adder

FA FA FAFA

C0C1
C2

C3

A3 B3 A2 B2 A1 B1 A0 B0

C4 C3 C2 C1 C0

Week3 12

Carry Propagation

• The value of si depends on the current Ai and Bi
and Ci. Ci depends on Ai-1, and Bi-1, and so on.

• That means the carry propagates across all the
digits in the two numbers to be added.

• Carry propagation time is a limiting factor on the
speed of addition (basic operation in virtually
everything).

• Si’s will not be ready at the same time
• We need to speed-up addition

7

Week3 13

Carry Propagation

Pi

Gi

Ai
Bi

Ci

Si

Ci+1

Pi=Ai ⊕ Bi Gi=AiBi G is called the carry Generator

Si=Pi ⊕ Ci Ci+1=Gi+PiCi

Carry if either Gi or
on of A,B and C

Gi=1 if Ai and Bi=1

Week3 14

Carry Lookahead

• Gi is called the carry Generator, and Pi is
the carry propagate.

• We can calculate the carry at every stage
by recursively substituting Ci
C0=input carry
C1=G0+P0C0

C2=G1+P1C1 = G1 + P1G0 + P1P0C0

C3=G2+P2C2 = G2 + P2G1 + P2P1G0 + P2P1P0C0

Circuit in Figure 4-11

8

Week3 15

4-Bit adder with Carry Lookahead

P3

G3 C3

P2

G2 C2

P1

G1 C1

P0

G0 C1

Ai
Bi

P3

C4

S3

P2

P1

P0

Week3 16

Adder/Subtractor

FA

S0

B0 A0

FA

S3

FA

S2

FA

S1

C4

V

9

Week3 17

Overflow

• When adding two n-bits number, the
answer has a maximum of n+1 bits.

• If the numbers are represented in the
computer by n bits, the n+1st bit is an
overflow.

• Usually the overflow is detected and
reported to the user.

Week3 18

Overflow
+60 0 0111100

+90 0 1011010

1 0010110

-60 1 1000100

-90 1 0100110

0 1101010

-60 1 1000100

+90 0 1011010

0 0011110

An overflow is detected if the carry
into the sign bit and the carry out of
the sign bit is not the same

1

1

10

Week3 19

Decimal Adder

Binary Sum

K Z8 Z4 Z2 Z1
0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
0 1 0 0 0
0 1 0 0 1
0 1 0 1 0
0 1 0 1 1
0 1 1 0 0
0 1 1 0 1
0 1 1 1 0
0 1 1 1 1
1 0 0 0 0
1 0 0 0 1
1 0 0 1 0
1 0 0 1 1

BCD Sum

K Z8 Z4 Z2 Z1
0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
0 1 0 0 0
0 1 0 0 1
1 0 0 0 0
1 0 0 0 1
1 0 0 1 0
1 0 0 1 1
1 0 1 0 0
1 0 1 0 1
1 0 1 1 0
1 0 1 1 1
1 1 0 0 0
1 1 0 0 1

Decimal

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

Week3 20

Decimal Adder
• The output of the BCD could be anything between 0

and 19 (9+9+carry).
• From the truth table, it is clear that there is a carry

(BCD carry) if any one of the following occurs
1. K =1 1 (if the number is greater than 16).
2. Z8=1 and Z4=1
3. If Z8=1 and Z2=1

• If there is a carry, we must add 6 to the binary number
to get the BCD code.

• That leads to the following circuit

11

Week3 21

Decimal Adder

4-bit binary adder

4-bit binary adder0

Cout

Z8 Z4 Z2 Z1

Cin

Week3 22

Binary Multiplier

• First, consider 2 bit multiplier

B1 B0
A1 A0
A0B1 A0B0

A1B1 A1B0
C3 C2 C1 C0

HAHA

C3 C2 C1 C0

A0

A1

B0B1

B1

B0

12

Week3 23

Binary Multiplier

Week3 24

Magnitude Comparator
• Assume that we want to design a magnitude

comparator for 2 4-bit numbers.
• Direct implementation of this requires a truth

table with 28=256 entries.
• It is easier to understand the algorithm by which

we compare two numbers, that leads to a much
less complicated design process.

• Assume the 2 numbers are represented as
A3A2A1A0 and B3B2B1B0

• The algorithm works as follows

13

Week3 25

Magnitude Comparator
• The two numbers are equal iff all the bits in the 2

numbers are equal. That leads to a design of
4EX-OR followed by inverter (actually ex-nor)
and an or gate.

• For A to be greater than B, we must have Ai > Bi
and Aj=Bi j>i.

• So, we start at digit 3, compare A3 and B3, either
one is greater or they are equal we move to A2
and B2 and so on.

• If we define xi to be the ex-nor of Ai and Bi i.e. xi
is 1 if Ai=Bi

Week3 26

Magnitude Comparator

• In this case,
• (A=B)=x3x2x1x0

• (A>B)=A3B’3+x3A2B’2 + x3x2A1B’1+x3x2x1A0B’0
• (A>B) replace the prime from B to A.
• Circuit is shown in Figure 4-17

14

Week3 27

Decoders

• A decoder is a combinational circuit that
converts binary information from n inputs
to a maximum of 2n outputs.

• A decode is called n-to-m decoder, where
m ≤ 2n

• Consider 3-8 decoder, truth table with 3
inputs x,y,z and 8 outputs D7 .. D0 the
circuit is shown in Figure 4-18

Week3 28

Decoders

• From truth table, circuit for 2x4 decoder
is:

• Note: Each output is a 2-variable
minterm (X'Y', X'Y, XY' or XY)

X Y F0 F1 F2 F3
0 0 1 0 0 0
0 1 0 1 0 0
1 0 0 0 1 0
1 1 0 0 0 1

F0 = X'Y'

F1 = X'Y

F2 = XY'

F3 = XY

X Y
2-to-4

Decoder
X

Y

F0

F1

F2

F3

15

Week3 29

Decoders

x y z F0 F1 F2 F3 F4 F5 F6 F7
0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0
0 1 1 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 1 0 0
1 1 0 0 0 0 0 0 0 1 0
1 1 1 0 0 0 0 0 0 0 1

F1 = x'y'z

x zy

F0 = x'y'z'

F2 = x'yz'

F3 = x'yz

F5 = xy'z

F4 = xy'z'

F6 = xyz'

F7 = xyz
3-to-8

Decoder

X

Y

F0

F1

F2

F3

F4

F5

F6

F7

Z

Week3 30

Decoders

• Some decoders are implemented using NAND
gates, in this case it will be more economical to
produce the output in their complemented form.

• 2-4 decoder
• Circuit 4-19
• When E is 1, non
Of the outputs I 0
• Decoder may be
Activated With E=0 or 1

E A B D0 D1 D2 D3

1 X X 1 1 1 1

0 0 0 0 1 1 1

0 0 1 1 0 1 1

0 1 0 1 1 0 1

0 1 1 1 1 1 0

16

Week3 31

Decoders

Week3 32

Decoders
• A decoder with an Enable input can function as

a demultiplexer
• A demultiplexer is a circuits that receives data

from a single line, and direct it to a possible of 2n

lines (example sharing a communication line).
• The decoder in the previous slide can function

as a demultiplexer if we consider E to be the
data and A, and B to be the input selection.

• Verify this by assuming selection 10 and
determine the output (always equal to E).

17

Week3 33

Decoders

• Decoders with enable
can be connected
together to form a
larger decoder

3 x 8
decoder

E

3 x 8
decoder

E

D0 to D7

D8 to D15

X

Y

z

w

Week3 34

Decoders
• Any n-variable logic function can be implemented

using a single n-to-2n decoder to generate the
minterms
– OR gate forms the sum.
– The output lines of the decoder corresponding to the

minterms of the function are used as inputs to the or
gate.

• Any combinational circuit with n inputs and m
outputs can be implemented with an n-to-2n decoder
with m OR gates.

• Suitable when a circuit has many outputs, and each
output function is expressed with few minterms.

18

Week3 35

Decoders
• Decoders can be used to

implement logic functions.
• Consider the function

S(x,y,z)=Σ(0,1,3) and
C(x,y,z)= Σ(4,2)

• Verify this by stating what
will be the output if the
input is any of the
different combination in
the truth table

0

1

2

3

4

5

6

7

x

y

z

S

C

Week3 36

Standard MSI Binary Decoders ExampleStandard MSI Binary Decoders Example
74138 (3-to-8

decoder)

(a) Logic circuit.
(b) Package pin configuration.
(c) Function table.

19

Week3 37

Encoders
• Encoders perform the reverse operation of a

decoder.
• An encoder has up to 2n input lines, and n output

lines.
• The encoder generates the binary code

corresponding to the active input line.
• Truth table with 8 variables and three outputs,

only need 1 in every row
• x=D1+D3+D5+D7; y = D2+D3+D6+D7;

Z=D4+D5+D5+D7

Week3 38

Encoders Inputs Outputs

I 0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 y2 y1 y0

1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 1 1
0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 0 1 0 1
0 0 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 1 1 1 1

I0

I1

I2

I3

I4

I5

I6

I7
y0 = I1 + I3 + I5 + I7

y1 = I2 + I3 + I6 + I7

y2 = I4 + I5 + I6 + I7

20

Week3 39

Priority Encoders
• Priority encoders are encoders with a certain

priority scheme.
• If more than one input is active, the one with the

higher priority is encoded.
• The following figure shows the truth table for a

priority encoder.
• Note than there is a valid bit. The valid bit

indicates if the output is valid or not, if non of the
input is active, the V bit is 0, means nothing is
active

Week3 40

Priority Encoders
• What if more than one input line has a value of 1?
• Ignore “lower priority” inputs.
• Idle indicates that no input is a 1.
• Note that polarity of Idle is opposite from Table 4-8 in Mano

Inputs Outputs

I 0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 y2 y1 y0 Idle
0 0 0 0 0 0 0 0 x x x 1
1 0 0 0 0 0 0 0 0 0 0 0
X 1 0 0 0 0 0 0 0 0 1 0
X X 1 0 0 0 0 0 0 1 0 0
X X X 1 0 0 0 0 0 1 1 0
X X X X 1 0 0 0 1 0 0 0
X X X X X 1 0 0 1 0 1 0
X X X X X X 1 0 1 1 0 0
X X X X X X X 1 1 1 1 0

21

Week3 41

Priority encoders
• Assign priorities to the inputs
• When more than one input are asserted, the output generates the

code of the input with the highest priority
• Priority Encoder :

H7=I7 (Highest Priority)
H6=I6.I7’
H5=I5.I6’.I7’
H4=I4.I5’.I6’.I7’
H3=I3.I4’.I5’.I6’.I7’
H2=I2.I3’.I4’.I5’.I6’.I7’
H1=I1. I2’.I3’.I4’.I5’.I6’.I7’
H0=I0.I1’. I2’.I3’.I4’.I5’.I6’.I7’
IDLE= I0’.I1’. I2’.I3’.I4’.I5’.I6’.I7’

• Encoder
Y0 = I1 + I3 + I5 + I7
Y1 = I2 + I3 + I6 + I7
Y2 = I4 + I5 + I6 + I7

I1
I2
I3 Y1

Y2I4
I5
I6

I0

Y0

I7

Binary encoder

I1
I2
I3
I4
I5
I6

I0

I7

Priority Circuit

H1
H2
H3
H4
H5
H6

H0

H7
IDLE

I1
I2
I3
I4
I5
I6

I0

I7

Priority
encoder

Week3 42

Priority Encoders

Inputs Outputs

D0 D1 D2 D3 x y z

0 0 0 0 X X 0

1 0 0 0 0 0 1

X 1 0 0 0 1 1

X X 1 0 1 0 1

X X X 1 1 0 1 111
111
111
111X

D0

D3

D2

D1

X=D2+D3

Y=D3+D1D’2
V=D0+D1+D2+D3

22

Week3 43

Priority Encoders
• Encoder identifies the requester and encodes the value
• Controller accepts digital inputs.

Encoder Controller

Machine
Code

Machine 1

Machine 2

Machine n

Alarm
Signal

Contoller
Response

Week3 44

Summary

• Decoder allows for generation of a single binary
output from an input binary code
– For an n-input binary decoder there are 2n outputs

• Decoders are widely used in storage devices
(e.g. memories)
– We will discuss these in a few weeks

• Encoders all for data compression
• Priority encoders rank inputs and encode the

highest priority input

23

Week3 45

Multiplexers
• A multiplexer is a combinational circuit that

accepts binary information from one of many
input lines and directs it to the output line.

• Which input to accept information from is
selected by the selection lines.

• Usually there are n selection lines and 2n input
lines.

• A multiplexer can be combined with a common
selection to select multiple bit selection, and
Enable to control the operation. Figure 4-26
shows a quadruple 2-1 line multiplexer.

Week3 46

Multiplexers

S

I0
I1

I0

I1

S

Figure 4-25

24

Week3 47

Function Implementation

• We can consider the multiplexer to be a
decoder that include the OR gates within.

• The OR minterms are generated by the
function associated with the selection
inputs.

• The rule to implement a function is as
follows:

Week3 48

Function Implementation
• Assume that we have n variables
• Choose n-1 of them to be the selection lines of a

2n-1-to-1 multiplexer.
• The selection lines chooses one of 2n-1 inputs.
• These inputs corresponds to the the truth table

(2n) entries taken 2 entries at a time.
• Assume the nth variable is Z.
• These 2n-1 entries each is Z, Z’, 0, or 1
• According to the entry number, the

corresponding input is one of these 4 values. 4-
27 and 4-28

25

Week3 49

Three States gates

• The figure shows a
three state buffer

⎩
⎨
⎧

==
==

=
0
1

CifZHighY
CifAY

Y

Input A

Control Input C

Week3 50

Multiplexers with three-state gates

Enable

Select

Y

Y
A

S

B

0

1

2

3

I0

I1

I2

I3

26

Week3 51

HDL for Combinational Circuits

• A module in Verilog can be described in
any one of the following modeling
techniques
– Gate-level modeling using instantiation of

primitive gates and user-defined modules.
– Dataflow modeling using continuous

assignment statements with assign
– Behavioral modeling using procedural

assignment statements with always

Week3 52

Verilog (gate-level)

• In gate level we have the following
primitive gates (and, nand, or, nor xor,
xnor, not, buf)

• The system assigns four-valued logic to
every gate (0,1,z,x).

• The truth tables for the 4 most used gates
is shown in the next slide

27

Week3 53

Verilog

and 0 1 x z

0 0 0 0 0

1 0 1 x x

x 0 x x x

z 0 x x x

Or 0 1 x z

0 1 1 x x

1 1 1 1 1

x x 1 x x

z x 1 x x

xor 0 1 x z

0 0 1 0 0

1 1 0 x x

x x x x x

z x x x x

not Input output

0 1

1 0

x x

z x

Week3 54

Verilog 2-4 line decoder
//gate-level description of a 2-4 line decoder
module decoder_g1(A,B,E,D);

input A,B,E;
output [0:3]D;
wireAnot, Bnot, Enot;
not

n1(Anot,A),
n2(Bnot,B),
n3(Enot,E);

nand
n4(D[0],Anot,Bnot,Enot),
n4(D[1],Anot,B,Enot),
n4(D[2],A,Bnot,Enot),
n4(D[3],A,B,Enot);

endmodule

28

Week3 55

Three-state Gates

bufif1 bufif0

notif0
notif1

in

control bufif1(OUT,A,control);

notif0(Y,B,enable);

Week3 56

Three State Gates

outA

B

Select

module muxtri(A,B,select,OUT);

input A,B,select

output OUT;

tri OUT;

bufif1(OUT,A,select);

bufif0(OUT,B,select);

endmodule

must be
tri

29

Week3 57

Dataflow Modeling
//Dataflow modeling of a 2-4 line decoder
module decoder_df (A,B,E,D);

input A,B,E;
output [0:3] D;
assign D[0]=~(~A & ~B & -E),

D[1]=~(~A & B & ~E),
D[2]=~(A & ~B & ~E),
D[3]=~(A & B & ~E);

endmodule

Week3 58

Dataflow Modeling

//Dataflow modeling of a 4-bit adder
module binary_adder (A,B,C_in,SUM,C_OUT);
input [3:0]A,B;
input C_in;
output [3:0] SUM;
output C_out;
assign {C_out,SUM} = A+B;
endmodule

30

Week3 59

Dataflow Modeling
//Dataflow Modeling of a 4-bit
comparator

module magcomp (A,B,ALSB,AGTB,AEQB);
input [3:0] A,B;
output ALTB, AGTB,AEQB;
assign ALTB = (A < B),

AGTB = (A>B),
AEQB = (A==B);

endmodule

Week3 60

Dataflow Modeling
//Dataflow model for a 2-to-1 mux

module mux2x1_df(A,B,select,OUT);
input A,B,select;

output OUT;
assign OUT= select? A : B;

endmodule

31

Week3 61

behavioral description
//Behavioral description of a 2-1 line MUX

module mux2_1 (A,B,select,OUT);
input A,B,select;
output OUT;
reg OUT;
always @ (select or A or B)

if (select == 1) OUT = A;
else OUT=b;

endmodule

Week3 62

Simulation (Test Bench)

• A test bench is a program for applying
simulation to an HDL design.

• initial statements are executed at time 0
• always statements are executed always
• test module has no input or outputs
• The signals that are applied to the design

module are declared as reg.
• The output of the design modules are

declared as wire.

